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Abstract

We study the trading dynamics in a distressed asset market with search frictions. When

trading of a financial asset ceases due to an adverse selection problem, a large player

can resurrect the market by buying up bad assets which involves assuming financial

losses. The player can, however, delay the intervention: a mere announcement today

of intervening at a later point in time can cause markets to function again. This

announcement effect gives rise to a trade-off between the size and the timing of the

intervention. The optimal intervention involves balancing the financial losses from the

intervention and the social cost of illiquid markets. If the losses are small and a market

is deemed important, it is optimal to ensure that the market functions continuously.

In this case, there is a fixed cost associated with intervention delay, making it optimal

to intervene as early as possible at the minimum size. As losses increase and the

importance of the market declines, the intervention is optimally delayed and it can be

optimal to rely on the announcement effect by increasing the size of the intervention.

∗We thank Michael Gallmeyer, Cyril Monnet, Guillaume Rocheteau, Pierre-Olivier Weill, Stephen
Williamson and Randall Wright for their comments, as well as the audience at many conferences and
institutions where we presented this paper. The views expressed in this paper are not necessarily the
views of the Bank of Canada.
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Furthermore, our finding highlights the importance of search friction in the formation

of market distress, the determination of policy announcement effect, and the optimal

design of intervention.

1 Introduction

The financial system has traditionally relied on direct lending between individual institutions

and investors for financing and allocating liquidity. More recently, however, liquidity

provision has moved away from intermediaries to markets. Examples are primary and

secondary markets for mortgage-, other asset-backed securities and for commercial paper

or the interbank market. Liquidity problems do not arise because an individual institution

cannot find funding. Instead, they manifest themselves as entire markets for assets shutting

down – or as a “market freeze” – with financial institutions being unable to access them for

liquidity.

The financial crisis of 2007-2009 forced governments and central banks to heavily intervene

in financial markets that were impaired by the risk and uncertainty surrounding the assets

being traded. A prominent intervention was the outright purchase of assets in distressed

markets either permanently or through term repurchase operations.1 These measures were

unprecedented and policy makers were forced to act without much guidance from economic

research for their appropriateness and design. As liquidity provision through markets will

remain prominent, it is necessary to gain a better understanding of how to engage in such

market-making-of-last-resort and to develop guidelines for when such policies are indeed

optimal.

In this paper, we study how a market where trading has ceased reacts to the intervention

of a large player and analyze the optimal design of the intervention when the liquidity crisis

is dynamically unfolding.2 To generate a market freeze endogenously, we introduce adverse

selection with respect to the quality of the assets traded into a search-theoretic model of

asset pricing. More specifically, investors search for trading partners to allocate liquidity.

Investors sell assets if they need liquidity, while other investors are willing to provide such

1The Fed for example is currently purchasing mortgage-backed securities and offers other programs that are
technically lending facilities, but in fact remove toxic assets from markets for a horizon of up to 5 years. All
these measures placed assets from markets where trading had ceased onto the asset side of the Fed’s balance
sheet (see Bernanke [1]).
2In principle, any public entity could assume such a function. As the current crisis, however, shows, central
banks and possibly Treasury Departments are the most likely institutions to carry out such policies.

2



liquidity by buying the asset. The quality of the asset varies, and investors who own the

asset can observe its quality, but potential buyers cannot. This causes an adverse selection

problem for trading the asset: Bad assets are always on the market, while good asset are

only on the market if an investors needs to sell to obtain liquidity. When the average quality

of the asset falls unexpectedly and permanently, the adverse selection problem becomes more

severe causing trading of the asset to stop – the market freezes.

With the market not functioning, investors cannot obtain liquidity anymore by selling the

asset. Over time the costs of the market freeze increase, as more and more investors need

to raise liquidity but cannot access the market. A large player called market-maker-of-last-

resort (MMLR), however, can intervene at some time after the shock by buying bad assets.

We show that the MMLR can establish trading after the intervention again, if he removes a

sufficiently large quantity of bad assets which involves assuming losses: he needs to offer a

price to lemons (investors that hold a bad asset) that makes them at least indifferent between

selling to the MMLR at the time of the intervention and waiting to sell to other investors

when the market functions again.

When characterizing the dynamics of trading before and after the intervention, we uncover

an announcement effect : when the MMLR announces a future intervention, investors might

have an incentive to trade before the intervention. This implies that the market can recover

fully or partially before the actual intervention. The reason is quite intuitive. First, the

intervention offers a (discounted) option value when buying the asset. Having bought a

lemon, an investor will have a chance to sell it to the MMLR in the future. Second, there

is a strategic complementarity. The intervention resurrects the market, implying that an

investor can sell an asset on the market after the intervention. Finally, if trading had

stopped for some time, the average quality of the asset has increased, as more and more

investors are trying to sell a good asset, but were not able to do so.

We characterize the time when the market recovers as a function of the policy variables which

are the time of intervention and the option value. The MMLR can raise the option value by

increasing the purchase price and the purchased amount of bad assets. The option value needs

to be financed by transfers which correspond to the costs of the intervention. An optimal

policy balances the net present value of losses from purchasing bad assets against the benefits

for investors from being able to obtain liquidity again through asset sales. Interestingly, the

announcement effect causes a trade-off between the size of the intervention and its timing:

announcing a larger intervention is more costly, but allows markets to recover faster.

If a MMLR is required to maintain continuously functioning markets, we show that the
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optimal policy is to intervene immediately after the shock, but at the minimum scale that is

required to resurrect the market. We then study the optimal size and time for intervening

which involves balancing the financial losses from the intervention and the social cost of

illiquid markets. We find that, if the losses are small and a market is deemed important, it

is optimal to ensure that the market functions continuously by an immediate intervention.

This is in stark contrast to the literature that analyzes optimal marketmaking in the face

of pure liquidity shocks.3 As losses increase and the importance of the market declines, the

intervention is optimally delayed and it can be optimal to rely on the announcement effect

by increasing the size of the intervention.

Employing a framework based on search in asset markets4 is not only a matter of convenience,

but captures several features that are crucial for analyzing market-making-of-last-resort.

First, such a framework has a clear notion of liquidity and its cost, which corresponds to

how easy it is to sell an asset in the market.5 Second, the framework is dynamic allowing us

to study how policy and trading on the market interact with each other. Third, allocating

liquidity involves a (dynamic or intertemporal) strategic complementarity often described as

liquidity hoarding. This is also present in our framework, as the ability to sell the asset in

the future influences the incentives to buy an asset (in other words, provide liquidity) today.

Our finding highlights the importance of search friction in the formation of market distress,

the determination of policy announcement effect and the design of optimal intervention.

There is an emerging literature that studies the effects of liquidity crises in search models of

asset pricing. Weill [18] exhibits the role dealers play in over-the-counter markets to absorb

temporary selling pressures. Even more relevant is the work by Lagos et al. [12]. Their

paper analyzes when private dealers do not have sufficient incentives to provide liquidity

to investors in times of a crisis. While pointing out that a government may improve upon

the situation with a small intervention, they do not study the strategic interaction of the

government as a large player with the market. Furthermore, the authors abstract from the

fundamental reasons for the crisis. These are important, however, as they determine the

losses the MMLR will have to absorb as a result of its intervention.

In our approach, a liquidity crisis arises due to an unforeseen shock to the average quality

of assets being traded, which causes the market for these assets to freeze as a result of an

3For example, Weill [18] shows that in the case of a liquidity shock, it is never optimal to intervene
immediately.
4See for example Duffie et al. [6], [7], Vayanos and Wang [16] or Vayanos and Weill [17].
5Such models are also a good description of many markets where financial institutions obtain short-term
liquidity such as overnight markets, money markets and markets for securitized assets.
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adverse selection problem.6 Recently, there have been other, fundamental explanations for

such a crisis. Brunnermeier and Pedersen [4] point out that margin requirements can lead

to liquidity shortages in markets. Bolton et al. [2] identify strategic considerations where

investors obtain liquidity through asset sales early in the anticipation of a potential crisis,

thus precipitating the crisis itself by selling assets at fire sale prices. While the first paper

builds on a coordination problem, the latter has investors trade early to prevent being caught

in an adverse selection problem.7

It is worth to briefly discuss our notion of a MMLR. Marketmakers provide liquidity by

standing ready to accumulate or draw from an inventory of assets to smooth out fluctuations

in the demand and supply for the assets. Usually working for profit, they manage their asset

portfolio by charging a bid-ask spread on their transactions with market participants.8 In

a crisis situation, where due to uncertainty or risk a market freezes, private marketmakers

that operate strictly for profit might neither have the capital, nor the incentives to provide

such a function. An institution like a central bank, however, could act as a marketmaker

and stabilize markets even if this involves expected losses.

The notion of a MMLR as a public entity that intervenes in some market is relatively new

(see for example Buiter [5]), and a detailed discussion of how to perform such a function

is largely absent in the literature. Such a function is different from regular marketmaking.

First, a MMLR is only transacting in extreme situations such as a crisis where the entire

market breaks down for a long time. In normal times, the MMLR is not involved in trading,

as there are no gains from intervening. Second, a MMLR will in general not be able to run

down an inventory of assets that he has accumulated during a crisis. This implies that he

will not necessarily be able to operate for profit. Third, he is non-competitive acting as a

large player at a specific time in the market. Summarizing, a MMLR acts essentially as the

buyer-of-last-resort with the aim of resurrecting the market. Still, he does provide liquidity

in the sense that he stands ready to absorb bad assets in times of a crisis. We recover all

these features in our model.9

6As such, our paper also contributes to the growing literature on search and the role of private information
(see for example Guerreri et al. [8], Lester et al. [13], Rocheteau [14]) or Williamson and Wright [19].
7Another paper by Heider et al. [9] stresses adverse selection concerning counterparty risk as an explanation
for a breakdown in interbank lending through liquidity hoarding. Their static model can not, however, study
explicitly the interaction between policy interventions and market recovery.
8See for example Rust and Hall [15] or Duffie et al.[6].
9A MMLR is different from a private investor in different aspects. A MMLR is able to commit to future
actions, is able to overcome search frictions, is sufficiently large to affect market outcome, and is benevolent
(and thus internalize trading externalities).
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The role of a government providing liquidity for the entire financial system has not been

widely studied in the literature. Holmström and Tirole [10] is an early example where

the state-contingent supply of public debt such as Treasuries can help to insure against

aggregate uncertainty and can be interpreted as public liquidity provision in a crisis. More

closely related to the proposed research, Bolton et al. [3] demonstrate that a government

that makes a market for assets can support a price floor for the asset. Such a policy removes

the incentives for asset sales at early stages of a potential liquidity crisis, thereby ensuring

well-functioning markets. This has also implications for the timing of public liquidity: to

prevent fire sales of assets, the MMLR must be committed to provide the floor in the future

when liquidity might dry up due to an adverse selection problem. We focus here on the

design of the intervention taking into account how the market will react to it before, during

and after the intervention.

The paper proceeds as follows. Section 2 introduces our model. In Section 3 we analyze

how an unanticipated permanent negative shock to the asset quality can lead to a market

freeze. Section 4 studies how a MMLR can intervene to maintain a continuously functioning

market. Section 5 derives the optimal time and size of intervention in different situations.

In Section 6 we extend the model to discuss the optimal intervention when the quality shock

is temporary and random.

2 Economic Environment

2.1 Overview

We employ a simple model of asset pricing under search frictions. The initial step is to

introduce one complication into such a model. There is an adverse selection problem, as

assets differ in their payoff structure which is private information for the owner of the asset.

As described below, this model will be capable of generating a partial or full breakdown of

trading through a combination of liquidity needs and information problems. We then add a

large player (called a MMLR) to the model that is confronted with such a market breakdown.

This large player can set a price and choose a time to buy any specific quantity of assets

on the market. This will enable us to study how one optimally trades off the benefits from

helping the market to recover with the potential losses from doing so.
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2.2 Model

Time is continuous and there are S assets. These assets are of two types. A fraction π of the

assets yields a dividend δ, whereas the rest does not yield a dividend. The return on these

assets is private information for the owner of the asset; i.e., only the holder of the asset can

observe its return, but not other investors. The assets are traded on the same market as

they are indistinguishable for a potential buyer, even though the seller knows whether they

yield a return or not.

Investors are risk-neutral and discount time at a rate r. We assume that each investor can

either hold one unit of an asset or no assets. They differ according to their valuation of the

asset: if the asset yields a dividend, they either have a holding benefit of xb ≥ 0 (and, hence,

are potential buyers of the asset) or a holding cost of xs ∈ (0, δ) (and, hence, are potential

sellers of the asset).10 Investors switch their valuation of the security from xb to xs according

to a Poisson process with arrival rate κ ∈ IR+. This captures the fact that some investors

who own a security might have a need for selling it – or in other words, have a need for

liquidity. The higher κ, the more likely an investor will face such needs.

To facilitate the analysis, we assume here that investors that sell the security leave the

economy and are replaced by new potential buyers. Similarly, when a potential buyer does

not own a security, but switches in its valuation of a security to a holding cost, he will leave

the economy being replaced by a new investor.

We assume throughout that the number of buyers, µb, is given exogenously and is not

influenced by the intervention of the MMLR. This is akin to assuming that there is a large

number of potential buyers relative to the assets in the market. Hence, we assume that

the number of buyers stays constant over time (µ̇b = 0).11 We assume further that there is

no centralized market mechanism to trade assets, but that investors are matched according

to a technology given by a matching function M = λµb[µs + µℓ], where M is the total

number of matches, λ is a parameter capturing the matching rate, and (µs, µℓ) are the

endogenously arising fractions of sellers with assets yielding a dividend and not yielding a

dividend, respectively.12 Our last assumption is that in pairwise meetings, only the buyer

10 While the holding cost proxies for liquidity needs, additional benefits of the asset can arise for example
from its value as collateral backing other investments.
11 This enables us to keep the law of motion a system of linear differential equations.
12 The interpretation is that investors are matched according to a Poisson process with a fixed arrival rate. As
a result, matches with investors seeking the opposite side of the trade occur at a rate λ which is proportional
to the measure of that investor group.
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Figure 1: Flow Diagram

can make a take-it-or-leave it offer.13

We can then describe the economy by the flow diagram in Figure 1. There are four groups

of investors: buyers (b), inactive owners (o), investors with good assets that want to sell (or

sellers) (s) and investors with bad assets (or “lemons”) (ℓ). Investors enter the economy from

the pool of outside investors, and investors exiting the economy return to that pool. A buyer

becomes an owner by buying a good asset (with probability λµs), becomes a lemon by buying

a bad asset (with probability λµℓ) and exits the economy by switching the valuation (with

probability κ). An owner also becomes a seller when switching his valuation (with probability

κ). Finally, if there is trade, sellers and lemons sell their assets and exit the economy (with

probability λµb). Note that lemons choose to transit immediately from buying to selling the

asset, while owners have first to experience a liquidity shocks. This gives rise to a classic

adverse selection problem.

13 This is a simplifying assumption to avoid the issue of bargaining in the presence of imperfect information.
See for example [13].
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3 Market Freeze

3.1 Pricing and Value Functions

To trade assets, agents can produce a numeraire good with which they have a linear utility

of consumption and production.14 In any meeting, a buyer can make a take-it-or-leave-it

offer to buy the security at price p. As the buyer cannot observe the type of security traded,

he will have to infer from his offer whether sellers with good assets will sell the security or

not. Sellers will demand at least a price that corresponds to the value of holding on to the

security. For sellers with bad assets, this is the expected resale value of the asset. For sellers

with good assets, this is the expected resale value plus the holding benefits. The problem

of adverse selection together with risk neutrality implies then that all sellers will sell at the

same price; in other words, they pool.15

We first derive the value functions for sellers with a good security, denoted by vs(t) and

determine then the take-it-or-leave-it offer of the buyer. Denoting the first time a seller

meets a buyer by τ , we obtain

vs(t) = Et

[∫ τ

t

e−r(s−t)(δ − xs)ds+ e−r(τ−t) max{p(τ), vs(τ)}
]
. (3.1)

The first expression on the right-hand side is the flow value from owning the security. The

second term gives the discounted value of meeting a buyer at random time τ > t. In such a

meeting, the seller either accepts the offer at price p or rejects it, staying as a seller (receiving

value vs(τ)). Differentiating this expression with respect to time t and rearranging yields

14Alternatively, we can assume that agents can transfer utility. This assumption implies that buyers can
finance all profitable purchases.
15 One can show that there is no separating equilibrium even using lotteries. The intuition is that separating
offers cannot be an equilibrium outcome because (i) buying only bad assets is not profitable because trade
surplus is zero; (ii) buying only good assets is not feasible because sellers have a tighter participation
constraint than lemons; (iii) buying both assets using separating contracts requires offering a higher price
and a higher trading probability to lemons, which turns out to be dominated by a pooling offer.
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the following differential equation16

rvs(t) = (δ − xs) + γ(t)λµbmax{p(t)− vs(t), 0}+ v̇s(t), (3.2)

where γ(t) ∈ [0, 1] is the probability that the buyer makes a take-it-or-leave-it offer to the

seller in order to buy the security. Hence, we allow buyers to randomize between making a

take-it-or-leave-it offer (probability γ) and not trading (probability 1 − γ) when meeting a

seller.

As we will see below, the price of asset p(t) is constant over time, and thus upon receiving a

bad asset, a buyer will immediately want to sell the asset. We denote the value function of

a lemon by vℓ. Similarly, upon receiving a good asset, a buyer will never sell it in a pooling

equilibrium, as he has a holding benefit xb and as any new potential buyer faces the risk of

acquiring a lemon. We denote the value functions of owners by vo. The value functions are

given by

rvℓ(t) = γ(t)λµbmax{p(t)− vℓ(t), 0}+ v̇ℓ(t) (3.3)

rvo(t) = (δ + xb) + κ(vs(t)− vo(t)) + v̇o(t) (3.4)

rvb(t) = λ(µs(t) + µℓ(t))max{max
p

π̃(p)vo + (1− π̃(p))vℓ(t)− p− vb(t), 0} (3.5)

−κvb(t) + v̇b(t), (3.6)

where the last expression takes into account that the buyer in a meeting can opt not to buy

the asset and that – provided he makes an offer – he will choose a price that maximizes his

expected pay-off given the adverse selection problem. This implies that he takes into account

the probability of having a good asset conditional on his offered price (π̃(p)).

An equilibrium is given by value functions and prices such that the take-it-or-leave-it-offer is

optimal for buyers and accepting or rejecting the offer is optimal for sellers and lemons for all

t. In a pooling equilibrium, all assets are traded at the same price. Sellers with good assets

will only sell if they get at least their outside option of holding the asset forever. The buyers,

16To gain some intuition, it is useful to use an approximation. For small ∆, we have

vs(t) =
1

1 + r∆

[
(δ−xs)∆+ γ(t+∆)λµb∆max{p(t+∆), vs(t+∆)}+(1− γ(t+∆)λµb∆)vs(t+∆)+ o(∆)

]
.

The first term on the right-hand side is the flow utility in a small time interval ∆ until the first buyer makes
an offer. The second term expresses the fact that with probability λµb∆ the seller meets a potential buyer
who makes an offer (with probability γ) with value max{p(t+∆), vs(t+∆)} for the seller. This takes into
account that the seller has the option to decline the offer. The final expression expresses the fact that the
seller does not meet a potential buyer. Rearranging and letting ∆ → 0, we again obtain the expression in
the text.
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however, will never offer more than this outside option. Hence, in equilibrium whenever an

asset is traded

p = vs =
δ − xs

r
. (3.7)

This is the standard pricing from the literature on search and asset prices taking into account

our assumptions on bargaining. Prices are equal to the discounted net present value of

dividends minus a liquidity premium.

3.2 Steady State Equilibria

We now derive values for the average quality of the assets, π, for which all assets are traded

and for which none are traded in a steady state equilibrium. In a steady state equilibrium,

the buyers strategy γ will pin down a distribution of assets across investors according to the

flow equations

µ̇b = 0 (3.8)

µ̇s = κµo − γλµbµs (3.9)

µ̇ℓ = −γλµbµℓ + γλµbµℓ = 0 (3.10)

µ̇o = −κµo + γλµbµs. (3.11)

Note that buyers that acquire lemons will immediately try to sell the asset in a pooling

equilibrium. This implies that the number of lemons that are being sold are constant. In

steady state, we obtain

µo + µs + µℓ = S (3.12)

µo + µs = πS (3.13)

κµo = γλµbµs. (3.14)

where the first two equations are just accounting identities for all assets and good assets.

Given the pooling equilibrium, the probability of obtaining a good asset π̃, due to the adverse

selection problem is given by

π̃ =


µs

µs+µℓ
if p ≥ vs(δ)

0 if p < vs(δ).
(3.15)
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where the steady state measures of asset holders are given by

µs =
κ

γλµb + κ
Sπ

µo =
γλµb

γλµb + κ
Sπ

µℓ = (1− π)S.

Therefore, if there is trade of the good asset in steady state we have

π̃ =
κπ

κ+ (1− π)γλµb

. (3.16)

Hence, equation (3.16) captures a negative “quality” effect. When more investors buy the

asset (γ increases), there are fewer good assets available for sale, reducing a buyer’s incentive

to buy at the price p = (δ−xs)/r. To facilitate notation, we normalize µb to 1 from now on.

We consider next the optimal strategy of the buyers. Buyers trade if and only if

π̃vo + (1− π̃)vℓ − vs ≥ vb (3.17)

where

vb =
λ(µs + µℓ)

λ(µs + µℓ) + (r + κ)

[
π̃vo + (1− π̃)vℓ − vs

]
. (3.18)

Hence, they trade if and only if

π̃vo + (1− π̃)vℓ − vs ≥ 0. (3.19)

The value of holding assets will depend on whether an inactive owner is able to sell the asset

again or not if he switches to become a seller – or, equivalently, on the strategy of the buyer,

γ.

vo =
1

r + κ

[
(δ + xb) + κvs

]
(3.20)

vℓ =
γλ

γλ+ r
vs. (3.21)

Note that the value of holding a good asset is independent of γ. The reason is that without

selling it, one derives still a fundamental value from it. For bad assets, the value depends

purely on the ability of selling it again. If this is the case, one realizes some surplus from
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pooling with owners of the good assets. Rewriting condition (3.19) we get for trade

π̃(δ + xb)− (δ − xs)
[
1 + (1− π̃)

κ− λγ

r + λγ

]
≥ 0 (3.22)

or

π̃

[
δ + xb

δ − xs

r + κ+ λγ

(
δ + xb

δ − xs

− 1

)]
≥ r + κ. (3.23)

First, set γ = 1 and define (δ + xb)/(δ − xs) = ξ. Then, to get trade we need

π ≥ (κ+ λ)(r + κ)

κ(ξr + κ) + λ(ξκ+ r)
≡ π̄. (3.24)

For γ = 0, we get no trade if

π ≤ r + κ

ξr + κ
≡ π. (3.25)

Comparing the two thresholds, we obtain that π ≥ π̄ if and only if κ ≥ r. Finally, for any

given π in between these thresholds, the indifference condition requires

π =
(κ+ γλ)(r + κ)

κ(ξr + κ) + γλ(ξκ+ r)
(3.26)

Differentiating we get (up to a constant)

∂π

∂γ
= (ξ − 1)(r + κ)λκ(r − κ), (3.27)

which depends on r relative to κ. In particular, π increases with γ if and only if r > κ. This

gives the following result.

Proposition 1. For any given π ∈ (0, 1), a steady state equilibrium exists.

If π ≥ π̄, we have that γ = 1 is a steady state equilibrium in pure strategies, i.e. all buyers

trade.

If π ≤ π, we have that γ = 0 is a steady state equilibrium in pure strategies, i.e. buyers do

not trade.

If κ < r, the steady state equilibrium is unique, with the equilibrium for π ∈ (π, π̄) being in

mixed strategies.

If κ > r, for π ∈ (π̄, π), there are three steady state equilibria including a mixed strategy one.

As shown in Figure 2, an asset market can be frozen due to a change in expectation or a
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change in asset quality. For example when κ > r, a move from point a to point b represents a

self-fulfilling market freeze as a result of coordination failure between traders, while a move

from point a to point c represents a fundamental market freeze as a result of an exogenous

drop in the asset quality π.

To see the role of market frictions in determining the equilibrium outcome, one can rewrite

the trade surplus in steady state as

π̃

1− π̃
(vo − vs) + (vℓ − vs) ≥ 0. (3.28)

The first term captures the quality effect. Note that it is given by

π

1− π

κ

κ+ λ
, (3.29)

which is decreasing in λ. As market friction goes down (i.e., higher λ), the fraction of good

assets available in the market drops, lowering the average quality of assets and the incentive

to trade. The last term captures the dynamic strategic complementarity. That is, if agents

are more willing to purchase assets in future, then the present value of obtaining a bad asset

goes up, increasing a buyer’s incentive to purchase an unknown asset now. The strategic

complementarity is increasing in λ. The reason is that upon obtaining a bad asset, it is

easier to sell it when market friction is low. Overall, the impact of market frictions depends

on the relative strength of these two effects.

Figure 3 shows the effect of λ on the steady state equilibrium. When κ > r, the strategic

complementarity dominates the quality effect. In this case, an increase in λ strengthens

the strategic complementarity and makes it easier to support a (full or partial) trading

equilibrium. Also, due to strategic complementarity, multiple equilibria can arise. When

κ < r, the quality effect dominates. In this case, an increase in λ lowers the average quality

of assets and makes it harder to support a full trade equilibrium.

3.3 Unanticipated Quality Shock and Intervention

We now consider a market freeze induced by a permanent negative shock to the asset quality.

Suppose now that the quality in the asset drops unexpectedly at t = 0 to a level π(0). We

assume that π(0) < min{π, π̄}, so that there is a unique steady state equilibrium of no trade.

We show next that after the shock there is convergence to this new steady state with no

trade in equilibrium along the path.
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Figure 3: Effect of Market Frictions
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Proposition 2. Suppose π(0) < min{π, π̄} ≡ πmin. There exists an equilibrium with no trade

at any t that converges to a steady state without trade. In addition, if π(0) ≤ κπmin

κ+(1−πmin)λ
,

this equilibrium is unique.

Proof. It is clear that there is a unique steady state with no trade for π(0) < πmin, since

with no trade in steady state, it must be the case that π̃(0) = π(0).

Suppose now there is no trade for any t. The law of motion is then given by

µ̇s(t) = −µ̇o(t) = κµo(t) (3.30)

with µℓ = (1− π(0))S. This implies that the fraction of good assets on the market for sale

at time t,

π̃(t) =
µs(t)

µs(t) + µℓ(t)
, (3.31)

is increasing monotonically to π(0). Hence, the asset quality reaches at most π(0) over time,

a level where there is no trade in steady state. Since vℓ(t) = 0 for all t, we are left to verify

that

π̃(t)vo − vs ≤ 0. (3.32)

for all t. We have that π̃(t) < π(0) for all t. Hence, it suffices to show that

π(0)vo − vs ≤ 0. (3.33)

We have that

π(0)

(
ξ

r

r + κ
+

κ

r + κ

)
≤ 1 (3.34)

or π(0) ≤ π. This confirms that no buyer will buy the asset along the transition path if

there is no trade at any point in time.

For the last statement, the condition implies that max
t

π̃(t) < πmin. Then, by the definition

of πmin, it must be the case that

π(0)(vo − vℓ) + (vℓ − vs) ≤ 0, (3.35)

with vℓ = λ
λ+r

vs. Hence, even if the average quality is at the maximum level, and there

is trade (γ(t) = 1) for all t afterwards, it is not optimal to buy an asset at any t. This

completes the proof.

Without an intervention by a MMLR, the market will freeze forever after a sufficiently large
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shock to the quality of the assets. However, removing a sufficient amount of bad assets,

ensures that there is a steady state with trade.17 Let I be the number of assets bought by

the MMLR. For κ > r, we have immediately that there will be trade in steady state as long

as
π(0)S

S − I
≥ π̄ (3.36)

or

I ≥ S

(
1− π(0)

π̄

)
≡ Imin. (3.37)

For κ < r, the issue arises on what level the market functions again, as there exist unique

steady state equilibria for all γ ∈ [0, 1]. In what follows, we assume that I is such that it

satisfies inequality (3.37).18

3.4 Continuous Trade after Intervention

We first look at how the average quality of the asset changes after the intervention. In

general, when there is no trade the average quality of the asset improves as more owners

suffer a liquidity shock (switch to xs) and want to sell, while the number of lemons in the

market stays constant. We can also show that – when there is trade after the intervention

– the average quality of the asset declines monotonically to the one in the steady state

condition we found earlier. Importantly, this is independent of any history of trade before

having continuous trade.

Lemma 3. After the intervention, the average quality of the asset π̃(t) decreases over time

whenever there is trade and increases whenever there is no trade.

Proof. See Appendix.

The next result establishes that after the intervention at T the average quality of the asset

is always above ˜̄π. This is the critical level for the average quality of assets being traded so

that there is a steady state with trade (γ = 1). The intuition is a follows. First, without

17Note that a market can switch from a full trade equilibrium to a no trade equilibrium as a result of a small
π shock. For the same reason, the market can be restored by a small intervention.
18 This allows us to not distinguish between the two cases. In the second case, it could be optimal to only
get the market functioning partially again. This would require an intervention that restores a mixed strategy
equilibrium with partial trading in steady state.
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intervening the floor for the average asset quality is simply given by π̃(0). Prior to the

intervention, if there is no trade, the asset quality increases. If at some stage before T , there

has been trade, it must be the case that µs(t) ≥ µs(0) for all t < T . Second, the MMLR

removes only bad assets which causes a discrete jump in the average quality at time T , that

is sufficient to raise floor for the average asset quality to ˜̄π. We denote the quality of assets

right after the intervention at T by π̃(T+) and its long-run steady state level by π̃(I).

Lemma 4. Suppose the intervention I ≥ Imin takes place at T . We have π̃(T+) ≥ ˜̄π.

Furthermore, π̃(t) converges monotonically to π̃(I) ≥ ˜̄π from above if and only if there is

trade for some [t,∞).

Proof. A lower bound on µs(t) is given by κ
κ+λ

Sπ(0). Using the intervention being at least

equal to I = S(1− π(0)
π̄
), this yields a minimum quality just after the intervention equal to

π̃(T+) =
κ

κ+λ
Sπ(0)

κ
κ+λ

Sπ(0) + S(1− π(0))− I
=

κπ̄

κ+ (1− λ)π̄
= ˜̄π. (3.38)

By the previous lemma, π̃(t) will decrease monotonically on this interval for any t ≥ T if and

only if there is trade in an interval [t,∞). Also, π̃(t) ≥ π̃(I). For t → ∞, it is straightforward

to verify that π̃(t) → π̃(I) ≥ κπ̄
κ+(1−π̄)λ

.

We now show that continuous trade after the intervention is indeed an equilibrium. To

ensure trade in the new steady state, the MMLR has to purchase a sufficient amount of the

bad asset such that π̃ ≥ ˜̄π at T . As long as there is trade for any t ∈ [T,∞), the economy

will converge monotonically to the steady state with trade. We then guess that there is trade

after T and verify that buyers have an incentive to buy for any t ∈ [T,∞) given that there is

trade at any later stage. The intuition is that waiting makes a potential buyer always worse

off. First, there is a probability less than one to transact in any future finite time interval.

Second, the average quality of the asset declines over time when there is trade.

To establish this result formally, it is convenient to define the function Γ : [T,∞) → IR by

Γ(t) = π̃(t)vo + (1− π̃(t))vℓ(t)− vs (3.39)

which is the net surplus from buying the asset at t. Note that in this function only the

average quality and the value of buying a lemon are time dependent. Also, Γ(t) > 0 if

γ(s) = 1 for all s ∈ (t,∞), as vℓ is a constant equal to λ
λ+r

vs. Finally, if there is trade at all

future dates, π̃(t) will decrease over time and so does Γ(t) as π̃(t) ≥ ˜̄π.
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Define Tsup = sup{t > T |vb(t) > Γ(t)}. That is Tsup is the last time when a buyer does not

prefer to buy the asset given that everyone else trades at all t > T . Note that we require

that in steady state there is trade. This implies that Tsup < ∞, as otherwise there cannot

be convergence to the steady state. We are left to show that at any time t ∈ [T,∞) buyers

do not prefer to delay the purchase of the asset.

Proposition 5. Continuous trade after the intervention is an equilibrium.

Proof. Since both Γ and vb are continuous over the interval [T,∞), it suffices to show that

Γ(Tsup) > vb(Tsup). By definition of Tsup, Γ(t) ≥ vb(t) for all t ∈ [Tsup,∞).

Consider some small time interval of size ∆. Let µ̄ = maxt∈[T,∞) µs(t) + µℓ. We have,

vb(Tsup) ≤ 1

1 + r∆

(
λµ̄∆Γ(Tsup +∆) + (1− λµ̄∆− κ∆)vb(Tsup +∆) + o(∆)

)
(3.40)

≤ 1

1 + r∆

(
(1− κ∆)Γ(Tsup +∆) + o(∆)

)
, (3.41)

where the inequalities follow from the fact that Γ(Tsup+∆) ≥ vb(Tsup+∆). Hence, it suffices

to show that

Γ(Tsup) >
1

1 + r∆

(
(1− κ∆)Γ(Tsup +∆) + o(∆)

)
. (3.42)

Rearranging, we obtain

rΓ(Tsup) + κΓ(Tsup +∆) >
Γ(Tsup +∆)− Γ(Tsup)

∆
+

o(∆)

∆
. (3.43)

The first term on the right-hand side is strictly negative as Γ̇(t) < 0 for all t ∈ (Tsup,∞) by

the definition of Tsup. Hence, we only need to show that

rΓ(Tsup) + κΓ(Tsup +∆) >
o(∆)

∆
. (3.44)

The left-hand side is strictly positive, as Γ(t) > 0 for all t ∈ [T,∞). Hence, for ∆ → 0 we

obtain (r + κ)Γ(Tsup) > 0, which completes the proof.

4 Intervention and Market Recovery

From now on, we assume that there is a shock to the quality of the asset at t = 0 such

that π(0) < π̄. The MMLR can make an announcement at t = 0 when the shock is realized
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about his policy. The policy consists of announcing a time T ≥ 0 to buy I assets at price

pM . It is important that the MMLR can commit to his announcement. We study now when

the market will function again given the announcement of T . Note that trading can resume

prior to the actual intervention. The exact trading pattern before T will determine π̃(T+),

and, hence, the exact transition to the steady state after the intervention. When the market

will function again, depends in turn on the value of the intervention.

To facilitate our analysis slightly, we assume that buyers that decline to trade have a zero

probability of trading again. This implies that the outside option for potential buyers is

constant at 0 and a buyer will decide to buy if and only if

π̃(t)(vo − vℓ(t)) + (vℓ(t)− vs) ≥ 0. (4.1)

This assumption removes the option for buyers to wait, but does not change any of the results

in the previous sections. We also take it as given that the equilibrium after the intervention

is monotone convergence to a steady state with trading, as shown in the previous section.

4.1 The Option Value of the Intervention

The MMLR also makes a take-it-or-leave-it offer for purchasing the asset at T denoted by

pM(T ). As discussed in the next section, the MMLR has always an incentive to minimize the

costs of intervention, so the price that the MMLR offers will make a lemon just indifferent

between waiting and selling immediately at T . Since after the intervention there will always

be trade, his value is given by

vℓ(T
+) =

λµb

λµb + r

δ − xs

r
, (4.2)

where T+ is the right-hand limit for t → T . The price the MMLR needs to offer to make

a lemon just indifferent between waiting to sell on the market and selling to the MMLR

immediately is thus given by pM(T ) = vℓ(T
+). The market price for trading the asset is

unaffected by the intervention. Hence, if there is trade this price is

pm(t) = vs(t) = (δ − xs)/r, (4.3)
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as good sellers will only sell their asset at their reservation price. Hence, prices in the market

are constant over time as long as there is trade.19

When intervening at the minimum level Imin, we obtain that the value of acquiring a lemon

just an instant before the intervention is given by

vℓ(T
−) =

Imin

S(1− π(0))
pM(T ) +

(
1− Imin

S(1− π(0))

)
λ

λ+ r

(
δ − xs

r

)
=

λ

λ+ r
vs. (4.4)

The reason is that the instantaneous probability of a trade on the market at time T is 0. The

first term is thus the expected value of a trade with the MMLR at T . Conditional on not

being able to sell to the MMLR, the lemon can still sell on the market after the intervention

as there will be trade again. This is the second term. This implies that being a lemon just

before the intervention is the same as in a steady state with trading again.

Interestingly, changing the size of the intervention given the minimum price pM(T ) does not

increase the option value of the intervention for buyers. However, the MMLR can increase

the price for buying assets to any price λ
λ+r

vs < pM(T ) ≤ vs. This increases the option value.

Once the MMLR has done so, increasing I can even increase the option value more, as the

first term in vℓ(T
−) is now strictly greater than the second one. Denoting the value of the

option by VI , we then have that

0 ≤ VI ≤
r

r + λ
vs (4.5)

with the value for a lemon given by

vℓ(T
−) =

λ

λ+ r
vs + VI . (4.6)

Note that at T there is a discrete drop in the value due to the activity by the MMLR if we

have VI > 0.20 Prior to the intervention, a lemon will always prefer to sell the asset if he

encounters a trade opportunity where the buyer wants to buy the asset. If he does not have

a trading opportunity, he will still be a lemon at the time of the intervention T . This yields

a value function for a lemon at t < T equal to

vℓ(t) = Et

[
e−r(τm−t)pm1{τm<T} + e−r(T−t)(pM(T ) + VI)1{τm≥T}

]
, (4.7)

where τm is the random time for the next trade opportunity provided the market functions

19In other words, the intervention will not affect the prices in the market. But this is an artefact of our
assumption that buyers have all the bargaining power.
20Note that this function is left-continuous at T , as it expresses the value of being a lemon at this time
having the option to transact with the MMLR.
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again. Solving for γ(t) = 1 in some interval [t, T ] we get

vℓ(t) =
λ

λ+ r

(
δ − xs

r

)[
1− e−(r+λ)(T−t)

]
+ vℓ(T

−)e−(r+λ)(T−t) (4.8)

or

vℓ(t) =
λ

λ+ r

(
δ − xs

r

)
+ VIe

−(r+λ)(T−t). (4.9)

If there is no trade in the interval [t, T ], we simply have vℓ(t) = vℓ(T
−)e−r(T−t). Finally, note

that with partial trading (γ(t) ∈ (0, 1)) we do not have a closed form solution. However,

vℓ(t) ≤ vℓ(T
−).

The value of buying a lemon depends therefore on the intervention itself as well as how the

market reacts to the announcement of there being an intervention at T . Being able to sell to

the MMLR is an option value. This option value increases, if such an intervention resurrects

the market already prior to the intervention. But it is lower due to discounting, the earlier

the investor trades before the intervention.

4.2 The Structure of Equilibria Before T

We now characterize equilibria prior to the intervention of the MMLR at T . It is again useful

to define the expected value of buying the asset. The function Γ(t) : [0, T ) → IR depends

now on the fact whether there is trade or not, which drives both vℓ(t) and π̃(t). It is again

defined as

Γ(t) = π̃(t)vo + (1− π̃(t))vℓ(t)− vs. (4.10)

Note that this function is continuous on [0, T ), but can jump at T , as the average quality

increases at this point and with VI > 0 the value of a lemon decreases. Furthermore, it is

right-continuous at T , as buying at T gives no chance to transact with the MMLR. The

direction of the jump, however, is not clear. The fraction of good asset increases, while the

value of being a lemon decreases. First, we show that once Γ(t) becomes positive it has to

remain there.

Lemma 6. If Γ(t0) ≥ 0 for some t0 < T , then Γ(t1) ≥ 0 for all t1 ∈ (t0, T ).

Proof. Suppose not. Then, there exists a t1 ∈ (t0, T ) such that Γ(t1) < 0. As Γ is continuous,

this implies that there must be an interval (τ0, τ1) ⊂ (t0, t1) where there is no trade, i.e.

γ(t) = 0. But then, over this interval, the average quality π̃(t) increases and we have that
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v̇ℓ(t) = vℓ(T
−)e−r(T−t)r > 0. Hence, Γ(t) must be strictly increasing over this interval

starting out at Γ(τ0) = 0. A contradiction.

This implies immediately that after we have some trade (γ(t) > 0), we cannot go back to no

trading anymore. It turns out that we can strengthen the result in such a fashion that once

the market fully recovers before the intervention at T , it will remain there in equilibrium.

Lemma 7. If γ(t) = 1 for some interval [t0, t1] with t1 < T , then Γ(t) is strictly convex over

this interval.

Proof. We have

Γ(t) = π̃(t)(vo − vℓ(t)) + (vℓ(t)− vs) (4.11)

Γ̇(t) = ˙̃π(t)(vo − vℓ(t)) + (1− π̃(t))v̇ℓ(t) (4.12)

Γ̈(t) = ¨̃π(t)(vo − vℓ(t))− 2 ˙̃π(t)v̇ℓ(t) + (1− π̃(t))v̈ℓ(t). (4.13)

We will show that Γ(t) is strictly convex if it is positive and strictly increasing. Assuming

γ(t) = 1 for the asset quality and omitting time indexes, we have

˙̃π = (1− π̃)
µ̇s

µs + µℓ

(4.14)

¨̃π = − ˙̃π
µ̇s

µs + µℓ

+ (1− π̃)
(µs + µℓ)µ̈s − (µ̇s)

2

(µs + µℓ)
2 . (4.15)

Since γ(t) = 1, ˙̃π(t) < 0. Also, we either have continuous trade or we need to have a non-

trade or mixing region before. Assume w.l.o.g. that Γ(t) crosses zero from below at time t0.

Hence, at t0, we need that the right-hand derivative Γ̇(t+0 ) > 0. This can only be the case if

v̇ℓ(t
+
0 ) > 0. Also, we have that

vℓ(t) =
λ

λ+ r
vs
(
1− e−(r+λ)(t1−t)

)
+ vℓ(t1)e

−(r+λ)(t1−t). (4.16)

Hence, v̇ℓ(t) > 0 for t ∈ [t0, t1] if and only if v̇ℓ(t
+
0 ) > 0. This implies that vℓ(t) is a strictly

increasing and strictly convex function over this interval. Hence, the last two terms are

positive in the expression for Γ̈(t). Note that vo − vℓ(t) > 0. If ¨̃π(t) is positive we are done.

Suppose to the contrary that ¨̃π(t) < 0. As long as Γ̇(t) > 0 over the interval, it must be the

case that

0 < vo − vℓ(t) < −1− π̃(t)
˙̃π(t)

v̇ℓ(t). (4.17)
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Using this in the expression for Γ̈(t), it suffices to show that

−¨̃π(t)
1− π̃(t)

˙̃π(t)
v̇ℓ(t)− 2 ˙̃π(t)v̇ℓ(t) + (1− π̃(t))v̈ℓ(t) > 0 (4.18)

or that

−
¨̃π(t)
˙̃π(t)

− 2
˙̃π(t)

1− π̃(t)
+

v̈ℓ(t)

v̇ℓ(t)
> 0. (4.19)

Note that v̈ℓ(t) = (r + λ)v̇ℓ(t). Hence, rewriting and using the fact that µ̈s = −(κ + λ)µ̇s,

we obtain

−
[
− µ̇s

µs + µℓ

+
−(µs + µℓ)(κ+ λ)− µ̇s

µs + µℓ

]
− 2

µ̇s

µs + µℓ

+ (λ+ r) > 0 (4.20)

(κ+ λ) + (r + λ) > 0 (4.21)

which completes the proof.

This implies that we have fully characterized all possible equilibria.

Proposition 8. All equilibria before T can be characterized by two breaking points τ1(T ) ≥ 0

and τ2(T ) ∈ [τ1, T ) such that

(i) there is no trade (γ(t) = 0) in the interval [0, τ1),

(ii) there is partial trade (γ(t) ∈ (0, 1)) in the interval [τ1, τ2),

(iii) there is full trade (γ(t) = 1) in the interval [τ2, T ).

The two breaking points cannot be determined analytically, unless in the special case where

τ1 = τ2. However, we can characterize when there is some recovery in the market before the

intervention. We turn to analyzing such an announcement effect next.

4.3 Announcement Effect: Partial and Full Recovery Before T

In general, there might be multiple equilibria due to the (intertemporal) strategic comple-

mentarity of trading the asset. However, we will focus mostly on equilibria where trading

resumes before the intervention. It turns out that such scenarios can be described nicely by

the equilibrium value for the surplus function from trading, Γ(t). We first characterize when

the market can recover before T .
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Proposition 9. Denote π̃max(T
−) the average asset quality at T before the intervention

conditional on there being no trade in [0, T ). There does not exist an equilibrium with trade

before the intervention at T (τ1(T ) = τ2(T ) = T ) if and only if

π̃max(T
−)vo + (1− π̃max(T

−))

(
λ

λ+ r
vs + VI

)
− vs ≤ 0. (4.22)

Proof. Suppose the condition is satisfied. The surplus from buying the asset at t ∈ [0, T ) is

given by

Γ(t) = π̃(t)vo + (1− π̃(t))vℓ(t)− vs (4.23)

< π̃max(T
−)vo + (1− π̃max(T

−))vℓ(t)− vs (4.24)

≤ π̃max(T
−)vo + (1− π̃max(T

−))vℓ(T
−)− vs (4.25)

= π̃max(T
−)vo + (1− π̃max(T

−))

(
λ

λ+ r
vs + VI

)
− vs (4.26)

≤ 0, (4.27)

since vℓ(t) ≤ vℓ(T
−). Hence, Γ(t) < 0 for all t < T independent of the trading strategy γ(t).

This implies γ(t) = 0 is the unique equilibrium for all t ∈ [0, T ).

Suppose now the condition is not satisfied, but that γ(t) = 0 for all t ∈ [0, T ) is an

equilibrium. We have that Γ(t) = π̃(t)vo + (1− π̃(t))
(

λ
λ+r

vs + VI

)
e−r(T−t) − vs. As t → T ,

Γ(t) → Γ(T−) > 0. Hence, even if no one trades before the intervention, it is optimal to buy

the asset for t sufficiently close to T . This implies that γ(t) = 0 for all t ∈ [0, T ) cannot be

an equilibrium, a contradiction. Hence, there must exist an equilibrium with τ1 < T .

This result has important implications. Whether there can be a recovery in the market

depends on the size of the shock (π(0)) and the policy of the MMLR. Note that we can

rewrite equation (4.22) to obtain a sufficient and necessary condition for recovery given by

π̃max(T
−) ≤ h(VI) (4.28)

where h is a threshold that decreases with the policy variable VI . The maximum average

quality, however, increases with T , but decreases with the shock π(0). Furthermore, it is

bounded by the initial level of quality π(0). Hence, for given T , one has to increase the

option value VI sufficiently to induce trading before the intervention. Also, provided the

shock is not too large, if T increases, there will be at least a partial recovery in the market
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prior to T , as the quality of the asset increases when the market is frozen. In particular, we

have the following result.

Corollary 10. Suppose VI = 0. There cannot be trade with γ(t) = 1 for any interval before

T (i.e. τ2(T ) = T ). Furthermore, if π(0) ≤ κπmin

κ+(1−πmin)λ
, the unique equilibrium before the

intervention is no trade for any T (i.e. τ1(T ) = T ).

Proof. Suppose that 0 ≤ τ2(T ) < T . Then, π̃(t) declines over [τ2, T ], while vℓ(t) = vℓ(T ).

Hence, the surplus from trade Γ(t) declines as well over this interval. Also, it must be the

case that γ(t) < 1 for t ∈ [0, τ2) given the initial shock π(0) < πmin. Hence, Γ(t) ≤ 0 for

[0, τ2). Since Γ(t) must be continuous over [0, T ), this implies that Γ(t) < 0 for (τ2, T ]. A

contradiction.

For the second part, note that the surplus for buyers is given by

Γ(t) = π̃(t)vo + (1− π̃(t))vℓ(t))− vs (4.29)

< π(0)vo + (1− π(0))vℓ(T )− vs (4.30)

≤ π̃minvo − (1− π̃min)vℓ − vs (4.31)

= 0. (4.32)

Hence, the surplus from trading is strictly negative for any t0 < T prior to the intervention,

even if there is trade with γ(t) = 1 for all T > t > t0. Hence, it is a strictly dominant

strategy to not trade.

4.4 Continuous Trade

A special case arises, when an announcement leads to continuous (full) trade (i.e. τ2(T ) = 0).

By the previous result, this can only be the case if the option value VI is large enough for a

given T . With continuous trade in [0,∞), the economy jumps immediately to a new steady

state at t = 0, with only the number of sellers with bad assets dropping at the time of the

intervention T . This implies that one can characterize continuous trade by only looking at

the limit of the expected value of buying the security at t = 0.

Proposition 11. There exists an equilibrium with continuous trade, if and only if

π̃(0)vo + (1− π̃(0))

(
λ

λ+ r
vs + VIe

−(r+λ)T

)
− vs ≥ 0 (4.33)
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Proof. If the condition is satisfied, we have that

Γ(t) > Γ(0) ≥ 0 (4.34)

for all t ∈ [0, T ], as vℓ(t) is strictly increasing when there is trading for all t. If the condition

does not hold, it is optimal to not trade for t sufficiently close to 0, even if there is trade

forever afterwards.

Since vo > vs, it is always feasible for the MMLR to delay the intervention, but to induce

continuous trade by setting VI sufficiently high. The intuition is simple. If the MMLR offers

vs for sure, it completely insures investors for buying a lemon just before the intervention.

Hence, there will be trade at this stage. Of course, the option value at t = 0 decreases when

the intervention is further away in the future.

Totally differentiating condition (4.33), we obtain

dT

dVI

=
1

(r + λ)VI

> 0 (4.35)

for r
r+λ

vs > VI > V min
I > 0. Here V min

I is defined as the minimum option value needed to be

able to support continuous trade with T > 0, or

V min
I =

π̃(0)

1− π̃(0)
(vs − vo) +

r

r + λ
vs. (4.36)

Hence, we have that a given intervention of size VI allows for continuous trade as long as

T < T c =
1

r + λ
ln

(
VI

V min
I

)
. (4.37)

It is useful to summarize the different cases for market recovery before the intervention.

Figure 4 depicts the situation of market recovery for different values for the shock π(0) and

the option value VI independent of the time of intervention. Hence, independent of the shock,

there always exists a sufficiently high option value so that the MMLR could postpone the

intervention, but still achieve continuous trade (i.e., τ2(T ) = 0 for some T > 0). Conversely,

if the option value VI is sufficiently low, then there is never trade prior to the intervention

for any given shock π(0) < π̃min (i.e., τ1 = T ). In the middle region, we may have an

announcement effect for some T > 0.

Figure 5 shows the same situation for a given value T > 0. The dashed lines depict the
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Cont. Trade

(τ2 = 0 for some T )

No Ann. Effect

(τ1 = T for all T )

π̃min πmin

vs

λ
λ+rvs

Figure 4: Announcement Effects independent of T in (π(0), VI)-space

boundaries of the areas of Figure 4. Observe that the larger is T , the higher VI has to

be to achieve continuous trade. As T increases, the solid line shifts further to the right,

implying that the option value has to increase for any given shock to ensure continuous

trade. Eventually, T becomes too large to ensure continuous trade altogether.

If the intervention takes place at some T , the quality of the asset in the market might not

improve sufficiently for people to trade prior to the intervention. Hence, as T increases, the

region where there is an announcement effect becomes larger, eventually converging to the

dashed line. Hence, the middle region – where 0 < τ1 < T – tends to expand as T increases.

Finally, note that for T sufficiently close to 0 our results imply a bang-bang result with

respect to the equilibrium. In other words, at T = 0 the lower solid line in Figure 5 coincides

with the upper dashed line. The value of buying an asset at 0 for T → 0 when the option

value is VI is given by

Γ(0−) ≡ π̃(0)vo + (1− π̃(0))

(
λ

λ+ r
vs + VI

)
− vs. (4.38)

When Γ(0−) is negative then there exists a unique no trade equilibrium for T sufficiently

close to 0. This depends again purely on the size of the option value VI for any given quality

π(0).
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Cont. Trade

(τ2(T ) = 0 given T > 0)

π̃min πmin

(τ1 = T given T > 0)

No Ann. Effect

λ
λ+rvs

vs

Figure 5: Announcement Effects for a given T > 0 in (π(0), VI)-space

4.5 Numerical Examples

This section presents some numerical examples illustrating the effects of policy and key

parameters on the trading dynamics. Table 1 gives parameter values for our numerical

example. Note that in this example, we have κ > r and hence πmin = π̄.

κ r λ π̄ xs xb

2 0.5 4 0.45 0.5 0.5

Table 1: Parameter values

Suppose there is a quality shock that drives π to π0 = 0.30 and thus there is a permanent

market freeze. The MMLR can resurrect the market by choosing intervention policy T and

VI . Figure 6 illustrates the effects of intervention on the timing of recovery (τ1, τ2).

(i) Fix VI = 0.03. As the MMLR chooses a later intervention time T , the timing of partial

and full recovery, τ1 and τ2, are delayed. So there is monotonicity of recovery times

in T . Furthermore, announcement effect is present only for sufficiently high T . This

is because, when VI is not too high as in this example, it takes time for the market

to accumulate enough selling pressure to significantly improve the average quality of

asset in the market to induce trade before intervention.

(ii) Fix T = 0.3. Recovery time is monotonically decreasing in the option value VI .
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Moreover, for large VI , there is no transition period with partial recovery. For VI

sufficiently large, there is continuous trade.
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Figure 6: Time of recovery as a function of T , VI , π(0), λ

Now, fixing the intervention policy at VI = 0.03 and T = 0.3, Figures (iii)-(iv) study how

the policy effect is affected by the sizes of quality shock (π(0)) and market friction (λ).

(iii) As the size of the quality shock drops (i.e., higher π(0)), the announcement effect is

monotonically increasing. For π(0) sufficiently close to πmin, there is continuous trade.

(iv) The effect of the market friction parameter, λ, is non-monotonic. On the positive side,

an increase in λ makes the resale of a bad asset easier and hence increasing buyers’

incentive to purchase. On the negative side, an increase in λ reduces the buyers’

incentive to purchase for two reasons. First, it reduces market frictions and thus

reduces the fraction of good assets available in the market, lowering the average quality

of assets. Second, it reduces the probability that a buyer, after having purchased a

bad asset, will resell it to the MMLR and receive VI (i.e., a lemon is more likely to

be resold before T ). This will reduce the discounted option value of the intervention,

VIe
−(r+λ)T .
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5 Optimal Time and Size of Intervention

5.1 Objective Function of the MMLR

The objective of the MMLR is a weighted average of the investors’ payoffs from holding the

security and the costs for MMLR from buying assets. Due to linear utility, we have for any

time interval

(1− θ)

∫ [
(µo(t) + µs(t))δ + µo(t)xb − µs(t)xs

]
e−rtdt+ (1− θ)

∫
Tr(t)e−rtdt

+ θ

∫
(−1)Tr(t)e−rtdt,

(5.1)

where θ is the weight on the MMLR’s costs. Note that Tr(t) are total transfers to investors

in acquiring the bad assets which net to 0. The first term measures the net benefit of holding

assets by the investors. The second term is the transfers received by the investors, while the

third expresses the transfers paid by the MMLR. Rewriting, we obtain

(1− θ)

[
πSδ

∫
e−rtdt+

∫
(µo(t)xb − µs(t)xs)e

−rtdt

]
− (2θ − 1)

∫
Tr(t)e−rtdt, (5.2)

where Tr(T ) = pM(T )I and 0 otherwise.

We need to restrict θ. For θ < 1/2, the planner would simply maximizing transfers into

the economy. Hence, θ ∈ [1/2, 1]. We can then think of θ as a measure for the importance

of resurrecting a market. Importantly, we only measure welfare for the economy according

to the allocation of assets across investors. The social value of getting the market working

again is given by how the assets with positive dividend are distributed across investors.

5.2 No Intervention in Normal Times

First, we show that intervention is not optimal when there is no shock that pushes the

average quality of assets below min{π, π̄}. Hence, we confirm that the MMLR should be

active only in the event of a bad enough shock.

Proposition 12. Suppose there is continuous trade. Buying I > 0 bad assets is not welfare-

improving.
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Proof. The welfare in (5.2) can be rewritten (up to some constant terms) as

(1− θ)(xs + xb)

∫ ∞

t=0

µo(t)e
−rtdt− e−rT (2θ − 1)pM(T )I. (5.3)

When there is continuous trade, an intervention does not affect µo(t), but incurs the cost of

intervention (i.e. the second term) which is negative for all θ > 1/2.

The intuition for this result is straightforward. Removing more bad asset will not influence

trading behavior, as long as new investors have an incentive to trade. With θ > 1/2 transfers

are, however, costly. We next investigate the optimal intervention for the special case of

continuous trade.

5.3 Special Case: Ensuring Continuous Trade

Suppose now we require the MMLR to have continuous trade. From the previous section,

we know that independent of the size of the shock, it is always feasible to have continuous

trade with T > 0 as long as the size of the intervention is large enough. In this case, the

optimal intervention size V ∗
I simply minimizes the costs of the intervention, as there are no

costs – beyond the search frictions – from a lack of trading in the market. Hence, this case

is interesting to study, as it looks at policies that minimize the costs for the MMLR.

When the MMLR delays the intervention, he must necessarily set VI > V min
I > 0. The

additional option value per lemon can be expressed as

VI =
Imin +∆I

S(1− π(0)
(pM(T ) + ∆p) +

(
1− Imin +∆I

S(1− π(0)

)
pM(T )− pM(T )

=
Imin +∆I

S(1− π(0)
∆p, (5.4)

where pM(T ) = λ
λ+r

vs is the minimum price necessary to purchase lemons during the

intervention. The total additional transfer for the MMLR associated with a positive option

value is given by VIS(1− π(0)).

The objective function is then given by

Tr(VI)e
−rT c

= (pM(T )Imin + S(1− π(0))VI) e
−rT c(VI)

=

(
λ

λ+ r
vs

1− π(0)
πmin

1− π(0)
+ VI

)
S(1− π(0))e−rT c(VI) (5.5)
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where T c(VI) is the largest time to have continuous trade given the intervention size VI and

VI ≥ V min
I . Hence, a MMLR would minimize this objective function with respect to VI . We

show next that the MMLR has no incentive to delay the intervention to achieve continuous

markets.

Proposition 13. Suppose the MMLR has to ensure continuous markets. The optimal policy

is to intervene immediately (V ∗
I = 0).

Proof. Differentiating the objective function with respect to VI , we obtain

S(1− π(0))e−rT c λ

λ+ r

(
1− r

r + λ

vs
VI

1− π(0)
πmin

1− π(0)

)
. (5.6)

Hence, a candidate solution is given by

V ∗
I =

r

r + λ
vs

1− π(0)
πmin

1− π(0)
. (5.7)

It is straightforward to verify that the second order derivative is positive at this point.

Furthermore, the objective function has a global minimum at V ∗
I .

We show next that V ∗
I ≤ V min

I . Suppose to the contrary that V ∗
I > V min

I . Rewriting this

condition we obtain(
r

r + λ

)
vs

(
π(0)

1− π(0)

)(
1− 1

πmin

)
> (vs − vo)

(
π̃(0)

1− π̃(0)

)
(5.8)(

κ+ λ

κ

)(
1− 1

πmin

)
>

(
vs − vo

vs

)(
r + λ

r

)
(5.9)(

κ+ λ

κ

)(
1− 1

πmin

)
>

(
r

r + κ

)
(1− ξ)

(
r + λ

r

)
. (5.10)

Suppose first that κ > r. This implies that πmin = π̄. Then,(
κ+ λ

κ

)(
(κ+ λ)− κ(ξr + κ)− λ(ξκ+ r)

(κ+ λ)(r + κ)

)
>

(
r

r + κ

)
(1− ξ)

(
r + λ

r

)
(5.11)

1

κ
[κr(1− ξ) + λκ(1− ξ)] > (1− ξ)(r + λ) (5.12)

which is a contradiction.

34



Now suppose that κ ≤ r which implies that πmin = π. We have now that(
κ+ λ

κ

)(
1− 1

πmin

)
>

(
r

r + κ

)
(1− ξ)

(
r + λ

r

)
(5.13)(

κ+ λ

κ

)(
r

r + κ

)
(1− ξ) >

(
r

r + κ

)
(1− ξ)

(
r + λ

r

)
(5.14)

κ > r, (5.15)

since ξ > 1. Again a contradiction, as for r = κ we have V ∗
I = V min

I .

The solution for minimizing the costs when delaying is given by V min
I , as the objective

function is strictly increasing for all VI > V ∗
I . This implies that delaying the intervention at

the expense of a larger intervention cannot be optimal to ensure continuous markets.

The intuition for this result is that delaying involves a fixed cost, as the MMLR has to pay at

least the option value V min
I . Furthermore, differentiating the objective function shows that

a MMLR minimizes the costs of a delayed intervention, when he purchases the minimum

amount of assets, Imin, at the maximum price vs. The option value associated with this

policy, V ∗
I , is below V min

I , and the net present value of transfers are increasing when the

MMLR increases the option value further. Hence, the costs of delaying are strictly larger

than an immediate, but minimal intervention.

5.4 Optimal Interventions

The policy we described in the last proposition is not necessarily optimal, because it might

be better to save on transfers by delaying the intervention. In particular, the MMLR can

choose to increase the size of intervention VI and rely on an announcement effect to speed up

the market recovery. Below, we will first study how the optimal intervention time depends on

the importance of the market, captured by θ, and then discuss with some numerical examples

the effects of other key parameters (e.g. π and λ) on the design of optimal intervention.

First, when a market is deemed important (small θ), an immediate intervention at a minimum

scale is optimal.

Proposition 14. Suppose π(0) < min{π, π̄}. There exists a cut-off point θ > 1/2 such that

it is optimal to intervene immediately for all θ ∈ [1/2, θ].

The proof is in the appendix. Quite interestingly, the proof depends heavily on the limits

of the announcement effect, in particular on there being a fixed cost for delaying the
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intervention, but still having continuous trade. On the other hand, when a market is not so

important (large θ), it is optimal not to intervene and let the market freeze persist.

Proposition 15. The optimal policy has T → ∞ for θ → 1.

The proof is in the appendix. Given these two propositions, one would expect that for

intermediate values of θ, it is optimal to have a delayed intervention. When the intervention

is delayed, equilibria have generically partial trading before the intervention. Hence, welfare

cannot be computed analytically anymore, as our linear differential equations have time-

dependent coefficients. While further characterizing the optimal intervention is analytically

infeasible, we can numerically solve for the optimal policy as a function of key parameters.

Table 1 again gives parameter values for our numerical example.

First, suppose there is a quality shock that drives π to π0 = 0.30 and thus there is a permanent

market freeze. The optimal intervention depends on the importance of the market captured

by the parameter θ. Resurrecting the market is more important when θ is close to 0.5,

and less important when close to 1. Figure 7 plots the optimal policy as a function of θ.

The optimal intervention can be divided into three regions with respect to θ. When θ is

small, an immediate intervention at a minimum scale is optimal. The market will function

continuously. For intermediate values of θ, it is optimal to delay the intervention and provide

a positive option value (i.e., T > 0, VI > 0). Over this region, the optimal intervention time

is increasing in θ, while the size of the intervention stays basically constant at an optimal,

positive option value. Whenever the MMLR delays, it will rely on the announcement effect.

In particular, 0 < τ1 < τ2 < T so that there is first a partial recovery, followed by a full

market recovery before the intervention. Finally, for high values of θ, it is optimal to not to

intervene at all (i.e. T = +∞, VI = 0).

We then study how the optimal intervention time T responds to the severity of the quality

shock (captured by πmin−π(0)), the relative importance of resurrecting the market (captured

by θ), and the market frictions (captured by λ). Figure 8 uses iso-value curves to illustrate

the optimal intervention time T for different combinations of π shocks and θ. For a given

λ, the optimal T is increasing in both the π shock and θ. If the quality shock is small and

a market is deemed important, it is optimal to intervene immediately to ensure that the

market functions continuously. For sufficiently high quality shock and unimportant markets,

it is optimal to tolerate a market freeze and make no intervention. Finally, for markets with

high trading frictions (i.e., small λ), it is optimal to intervene earlier because MMLR cannot

rely on announcement effects to resurrect markets.
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Figure 7: Optimal (T, VI) as a function of θ (π(0) = 0.30)
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Figure 8: Optimal T as a function of π(0), θ and λ

6 Conclusion

We have shown in this paper that a MMLR can resolve a market freeze, if he buys a

sufficient amount of assets. Most interestingly, there can be an announcement effect: simply

announcing the intervention can induce investors to start trading again. Depending on the

size of the shock to the average asset quality, the announcement effect may require a larger

than the minimal intervention. This opens up a trade-off between the size and the timing of

the intervention.

Policy makers often discuss about having financial markets function continuously. We
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have shown that a central bank or government facing such a goal should not rely on the

announcement effect, but intervene immediately at a minimum scale. We have also shown

here that indeed one can rationalize continuous markets as an optimal policy goal, if the cost

of public funds for the intervention are sufficiently small. This stands in stark contrast to the

literature that looks at marketmaking for liquidity reasons. There, immediate intervention

after a liquidity shock is never optimal (see for example [18]).

A stark assumption in our analysis makes the shock to the quality of the asset permanent.

With a random recovery time for π(0) to jump back to the original level our results might

change. If the initial shock is small and recovery relatively likely, the market might just

function continuously on its own. Also, there might be an incentive now to delay the

intervention – even if the MMLR is required to ensure continuous markets. Delaying saves

costs in expected terms, even if this requires an increase in the size of the intervention VI .

Also, once the asset quality recovers, the MMLR has the option to sell back some of the

assets it has acquired. This might induce it to intervene earlier as now the expected costs of

transfers have decreased.

An interesting detail of the announcement effect is that there is a time-consistency problem.

Suppose for the moment that investors believe the announcement that the intervention will

take place at some time T > 0 and start trading. The MMLR has then an incentive at T to

surprise the market by postponing the intervention for a small interval. Even if the market

would freeze for a short period, this could mean saving costs by delaying the intervention.

Investors will then view such announcements as not credible. To solve this time-consistency

problem, the MMLR might have to spread out purchases over time, thereby reducing the

gains from delaying the intervention.

We have not looked at another, related problem. The quality shock is exogenous in our

model. Suppose, however, that investors can create new assets. Anticipating that a MMLR

will resurrect the market, investors will have an incentive to create lemons. Hence, a moral

hazard problem arises from intervening in the event of a market freeze. The MMLR could

counteract these incentives by randomizing between intervening or not. We leave a detailed

analysis of the last two issues for future work.

7 Appendix

Proof of Lemma 3:

38



Proof. Let T be the time of intervention by the MMLR and assume that the MMLR removes

I assets.

Step 1: π̃(t) increases when there is no trade (γ = 0).

For any no trade interval [τ, τ ′] with τ ≥ T , flows at time t ∈ [τ, τ ′] are given by

µ̇ℓ(t) = 0

µ̇s(t) = κµo(t)

µ̇o(t) = −κµo(t).

Therefore, the measure of sellers is given by

µs(t) = Sπ(0)
(
1− e−κ(t−τ)

)
+ µs(τ)e

−κ(t−τ)

and the fraction of good assets on the market is given by

π̃(t) =
Sπ(0)

(
1− e−κ(t−τ)

)
+ µs(τ)e

−κ(t−τ)

Sπ(0) (1− e−κ(t−τ)) + µs(τ)e−κ(t−τ)(1− π(0))S − I
.

We have that up to a constant

∂π̃(t)

∂t
= −κe−κ(t−τ)(1− π(0)(S − I) (µs(τ)− Sπ(0)) > 0 (7.1)

as µs(τ) < Sπ(0).

Step 2: π̃(t) declines when there is trade (γ = 1).

The law of motion is given by

µ̇ℓ = 0

µ̇s(t) = κµo(t)− γλµs(t)µb

µ̇o(t) = −κµo(t) + γλµs(t)µb.

Therefore, the measure of sellers is given by

µs(t) = Sπ(0)
κ

κ+ γλµb

(
1− e−(κ+γλµb)(t−τ)

)
+ µs(τ)e

−(κ+γλµb)(t−τ)
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Again, for an interval with trade [τ, τ ′] with τ ≥ T we have

π̃(t) =
Sπ(0) κ

κ+γλµb

(
1− e−(κ+γλµb)(t−τ)

)
+ µs(τ)e

−(κ+γλµb)(t−τ)

Sπ(0) κ
κ+γλµb

(1− e−(κ+γλµb)(t−τ)) + µs(τ)e−(κ+γλµb)(t−τ) + (1− π(0))S − I

which gives up to constant

∂π̃(t)

∂t
= −(κ+ γλµb)e

−(κ+γλµb(t−τ) [(1− π(0))S − I]

(
µs(τ)− Sπ(0)

κ

κ+ γλµb

)
. (7.2)

If there has been continuous trade from t = 0 until τ , i.e. γ(t) = 1 for all t ∈ [0, τ ], we have

that µs(τ) = µs(0) = Sπ(0) κ
κ+λµb

. Hence, π̃(t) is constant as long as γ = 1.

If there has not been trade at some time before τ , i.e. γ(t) = 0 for some [t1, t2] ⊂ [0, τ ], it

must be the case that µs(τ) > µs(0).

Hence, π̃(t) declines independent of trading behavior before the intervention, since µs(τ) ≥
µs(0) = Sπ(0) κ

κ+λµb
.

Proof of Proposition 14:

Proof. Denote by V (T = 0) and c(T = 0) the benefits and costs of continuous trade. Note

that we know already that the optimal policy conditional on continuous trade is given by

T = 0 and a minimum intervention.

Step 1: For θ sufficiently close to 1/2, T = ∞ cannot be optimal.

If T = ∞ were optimal, we have that

V (T = ∞) > V (T = 0)− 2θ − 1

1− θ
c(T = 0). (7.3)

Since V (T = ∞) < V (T = 0), for θ sufficiently close to 1/2 this inequality is violated.

Step 2: Denote the optimal policy by Ψ(θ) for all θ ∈ (1/2, 1). Then, V (Ψ(θ)) → V (T = 0)

for θ → 1/2.

Since Ψ(θ) is the optimal policy, we have that

V (T = 0)− 2θ − 1

1− θ
c(T = 0) < V (Ψ(θ))− 2θ − 1

1− θ
c(Ψ(θ)) (7.4)
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where it must be the case that c(Ψ(θ)) < c(T = 0). Hence,

0 < V (T = 0)− V (Ψ(θ)) <
2θ − 1

1− θ
[c(T = 0)− c(Ψ(θ))] , (7.5)

and the result follows.

Step 3: The optimal policy Ψ(θ) satisfies T (θ) → 0 and VI(Ψ(θ)) → 0 for θ → 1/2.

Suppose to the contrary that lim inf T (θ) = T > 0 for θ → 1/2. Then, it must be the case

that V (Ψ(θn)) → V (T = 0). This implies that τ2(T ) → 0. As T (θn) > T , it must be the

case that

lim inf c(Ψ(θn)) > c(T = 0) + c(V min
I ) > c(T = 0). (7.6)

But this implies that for θ sufficiently close to 1/2, c(T = 0) is cheaper. Hence, Ψ(θ) cannot

be the optimal policy, a contradiction.

The second part of the statement follows from an analogous argument.

Step 4: For any sequence θn → 1/2, there exists some N such that T (θn|Ψ) = 0.

We have that for the optimal policy Ψ(θn), T → 0 and VI → 0. We show next that this

implies that for θn close enough to 1/2, there is no trade in the interval [0, T (θn)].

Suppose that π(0) < min{π, π̄} and let T > 0. For a minimum intervention, i.e. VI = 0, we

have that

Γ(0) = π̃(0)(vo − vs) + (1− π̃(0))(vℓ(0)− vs) < 0. (7.7)

The value of a lemon for all t < T can at most be vℓ(t) <
λ

λ+r
vs + VI . For VI < V min

I , we

also have

Γ(t) = π̃(t)(vo − vs) + (1− π̃(t))(vℓ(t)− vs) < 0, (7.8)

for all t in some interval [0, T ) where T > 0.

Given ˜π(0), we can then choose N large enough such that T and VI are sufficiently close to

0 to satisfy

Γ(T−) < π̃(T−)(vo − vs) + (1− π̃(T−))

(
r

λ+ r
vs + VI

)
< 0. (7.9)

Then, Γ(t) < 0 for all [0, T ). Hence, there is no trade before the intervention for any

candidate policy that is better than T = 0 and where θ is sufficiently close to 1/2.

Step 5: We can then use an earlier result that has shown that conditional on there being
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no trade before the intervention, it is optimal to intervene immediately for θ close enough

to 1/2. This completes the proof.

Proof of Proposition 15:

Proof. Suppose not. Then lim supθ→1 T = T̄ < ∞. This implies that

c(Ψ) ≥ pminImine
−rT̄ > 0. (7.10)

We have that the benefits of any policy are bounded by V (T = 0). Hence, for any optimal

policy we have that

V (T = 0)− V (T = ∞) ≥ V (Ψ(θ))− V (T = ∞) ≥ 2θ − 1

1− θ
c(Ψ(θ)) ≥ 2θ − 1

1− θ
pminImine

−rT̄ .

(7.11)

Letting θ → 1 violates this inequality.
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